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CHARACTERISTICS, CONSERVATION LAWS, AND SYMMETRIES 

OF THE KINETIC EQUATIONS OF MOTION OF BUBBLES IN A FLUID 

V. M. Teshukov UDC 517.958 + 532.529.5 

Generalized characteristics and Riemann invariants that are preserved along the characteristics 
are found for a kinetic model of motion of bubbles in a fluid. Conditions that ensure the 
hyperbolicity of a set of equations of a bubbly flow are obtained. It is shown that the set of 
equations of  motion has an infinite number of conservation laws. An infinite series of  generalized 
symmetries admitted by the equations is constructed. Solutions that are invariant under the 
generalized symmetries of solution and describe the propagation of running and simple waves 
in a bubbly fluid are found. 

In modeling the motion of a fluid with gas bubbles, it is important to take into account the effects 
of collective interaction between bubbles, because they can determine the stability or instability of wave 
processes in definite regimes of the flow. In some papers [1-4], a kinetic approach to a study of the propagation 
of concentration waves in bubbly fluids, which is based on the statistical treatment of the interaction between 
many bubbles, is proposed. Kinetic equations are widely used to describe the motion of and the interaction 
between charged particles in plasma physics and to describe statistically the flows of a fluid and a gas. In 
contrast to the motion of charged particles, where the basic long-range forces of interaction are associated 
with the electric and magnetic fields generated by an ensemble of particles, the interaction between bubbles is 
associated with the hydrodynamic effects of change in the pressure fields and velocity vector of a fluid in the 
neighborhood of a given bubble, which is caused by the motion of other bubbles. Russo and Smereka [1] derived 
kinetic equations for a rarefied bubbly flow, which are similar to Vlasov's equations used in plasma physics. 
In constructing the model, it was assumed that the bubbles are rigid massless spheres of the same radius. The 
fluid in which the bubbles move is considered ideal and incompressible, and its flow in the region between the 
bubbles is assumed to be potential. In addition, the effect of mass forces on the fluid, which is assumed to be 
quiescent at infinity, is not taken into account. In these conditions, the motion of the bubbles is determined 
only by the effects of their collective interaction and by the initial conditions. The "rigidity" assumption for 
the bubbles is approximately fulfilled in actual cases where the bubbles have a rather small radius, and the 
surface-tension forces preserving the shape of a bubble greatly exceed the hydrodynamic-pressure variations 
affecting the change in the bubble shape. 

It is known that the kinetic energy of the fluid occupying the space between the moving bubbles can 
be shown in the form of a quadratic dependence of bubble velocities [5]. The coefficients of this quadratic 
form are calculated through special potentials which describe the flows occurring during motion of one of the 
bubbles with unit velocity while other bubbles are quiescent. These potentials were approximately calculated 
in [1] for a rarefied bubbly medium by the asymptotic expansion of the solution of the Laplace equation into 
a power series of a small parameter, i.e., the ratio of the bubble radius to the average distance between them. 
This made it possible to obtain a system of ordinary Hamiltonian equations for the coordinates and momenta  
of the bubbles (the momentum of a bubble is defined as a partial derivative of the kinetic energy of a fluid with 
respect to the corresponding velocity). Using these equations and the method of deriving Vlasov's equations, 
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which was developed in collisionless plasma flow theory, Russo and Smereka derived the following system of 
integrodifferential equations of a bubbly flow: 

Of Of Of 2 3(3Vr  - j )  
- r  + " - z -  + F = -  = ~  , , =  p 

rpt Pz 

o / 
F = - ~ ( p . u ) ,  A e = d i v j ,  j =  p f d p .  

Here f ( t ,  ae, p) is the one-particle distribution function of bubbles on the coordinates and momenta,  p,  u ,  and 
r are the  momentum, velocity, and volume of the bubble, Pz is the density of the fluid, ~(t, a:) is a function 
which determines the self-consistent field, and the operators V and A are calculated with respect to x. 

The  present work studies a model that  describes one-dimensional flows. To treat this model, a new 
theoretical approach, which is based on the generalization of the theory of characteristics and the hyperbolicity 
concept of a set of equations and developed for a certain class of integrodifferential equations [6, 7], is used. 
The  continuous spec t rum of the characteristic velocities of a system of equations of a bubbly flow is shown, 
and Riemann invariants that  are preserved along the characteristics are calculated. Conditions that  ensure 
the hyperbolicity of the system of equations necessary for the flow stability are formulated. Equations that 
specify the classes of partial solutions, namely, the running and simple waves, are integrated explicitly. 

1. H y p e r b o l i c i t y  of  t h e  E q u a t i o n s  of  M o t i o n  of  B u b b l e s  in a F l u i d .  In the one-dimensional 
case, the  equation of mot ion of the bubbles have the form 

[ 2p 6j 
f t + u f z - p u z f p = O ,  j = j p f d p ,  u =  (1.1) 

rpt Pt 

Hereafter, the distribution function f ( t ,  x, p) is considered to be either rapidly decreasing at infinity or finite 
( f  = 0 for IPl > B and B > 0) with respect to the variable p. The  integral over the variable p is calculated 
in the limits - ~  to +oo  (hereinafter, the integration limits in the formulas containing these integrals are 
omit ted) .  

We introduce the  dimensionless variables x', t ' ,  pl, and f '  by the relations 

rptU , 2 .f, 
z = gz', t = (L/U)t', P - -  2 p '  f - -  3 r 2 p l U  

where L is proportional to the mean distance between the bubbles, and U is the characteristic velocity. In 
dimensionless variables, the equations have the form 

ft + ( p -  j)f~ + pj, fp = O, j = f pf dp (1.2) 

(the primes are not taken into consideration in the notation of the new variables). We introduce the Lagrangian 
variable ,~, which is preserved along the integral curves of the system of ordinary differential equations: 

z'(t) = p - j, p'(t) = Pjz. (1.3) 

The coordinate surfaces A(t, z, p) are constructed as follows. At the moment  t = 0, the set of curves $(x, p) = 
const, where Ip ~ 0, is chosen arbitrarily. Then we assume that  A(x, p) = const on the surface formed by the 
integral curves of system (1.3), which pass through the initial curve $(t, x, p) = const. In variables t, x, and 
,k, the system 

p t + ( p - j ) p ~ - p j x = O ,  f t + ( p - j ) h = O ,  j = f  fpp~ d.~ (1.4) 

is obtained from Eqs. (1.2). If system (1.4) is solved and the functions f( t ,  x, A) and p(t, x, ~) are known, then 
p = p(t, x, A) is determined from the relation ,~ = A(t, z, p). The substi tut ion of this dependence into f gives 
the solution of Eqs. (1.2) f ( t ,  z, p). Equations (1.4) can be presented in the general form 

Ut + AUx = 0, U = U(t, z, A), (1.5) 
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where A is the nonlocal operator with respect to the variable A: 

0, (p - j )  

= p / f ) ~ p . . ,  dA is the integral operator which acts on an arbitrary function qa according to the rule Here T 

T(q;) = p J f~pqo dA. The author [6, 7] generalized the concepts of characteristics and hyperbolicity to systems 

with operator functionals. Let B be the Banach space of the vector functions depending on the variable A, 
U(t, x,.), Ut(t, z, .), Uz(t, z,.) E B, A be the linear operator, and A : B ~ B. Generally, it is assumed 
that A depends on U (as the operator-valued function on B), x, t, and A. According to [6, 7], to find the 
characteristics of system (1.5), one should solve the eigenvalue problem 

(F a, A~) = ka(F, ~), k s = ka(x, t) (1.6) 

for the desired vector functional F a 6 B' and the eigenvalue k a [r 6 B is the trial function, and (F,  qa) is 
the value of the functional F on ~a]. The characteristic x = x(t) of the family with number a is set by the 
solution of the differential equation x'(t) = ka(x, t). The equality 

(F", + k"u ) = 0 (1.7) 

is called a relation on the characteristic [6, 7]. System (1.6) is called a hyperbolic function if all the eigenvalues 
k ~ are real, and the relations on the characteristics (1.7) are equivalent to (1.5). The determination data 
generalize the corresponding analogs of the classical theory of hyperbolic systems of equations which is 
concerned with the case where A is the operator in the finite-dimensional space. The basic difference between 
the infinite-dimensional and the finite-dimensional case is the appearance of the continuous spectra of the 
characteristic velocities. If the characteristic velocities are limited in absolute value, system (1.5) has the 
property of finiteness of the perturbation velocity along the x axis. 

For system (1.4), the eigenvalue problem (1.6) [~0 --- (~pl, qa2)t and F = (F1, F2)] yields two equations 
for the functionals F1 and F2: 

(F1, (p - j - k)~ 1 ) --}-/pf;~x ds O, 
~J 

(1.8) 
(F2, (p -- j - k)q; 2) - fppxcp 2 dA(Fl,p) = 0 

(the independence of the arbitrary functions q~l and qa 2 is used). This allows one to find these functionals 

(F1, c2) = - f pfaqo dA = [ 
p - k - ] '  (F2,~) J p - k - j  

which correspond to the discrete eigenvalues k ~ _]IS/ and M = {p - j, p E supp f},  i.e., the roots of the 
characteristic equation 

fp)~ dA 
x(k + j)  = (1 - n) + (k + j)2 f (P _ k _ / ) 2  - 0. (1.9) 

Bearing in mind the inequality 0 < n < 1 (for the model considered, the condition of flow rarefaction means 
that the quantity n is small), one can conclude that Eq. (1.9) has no real roots belonging to the addition of 
the set M on the real axis. For hyperbolicity of system (1.4), it is necessary that Eq. (1.9) have no complex 
roots. 

To formulate the explicit conditions which guarantee the lack of complex roots, we consider the function 
X+(z) of complex argument z which is analytic in the upper and lower half-planes and apply the principle of 
argument. If 

A argx+(p) = 0, (1.10) 

then (1.9) has no complex roots with Im k > 0 [8]. Here X+(p) is the limiting value of the function X+(Z) from 
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the upper half-plane on the real axis, and A axg is the increment of the argument  of the complex function on 
the p E (-cx~, cr axis. If s u p p f  is limited, similarly, we obtain the condition 

arg (x+ (p) / x -  (p) ) = o (1.11) 

where X-(P) is the l imiting value from the lower half-plane, and A arg is the increment of the argument on 
the carrier function f .  If condition (1.10) [or (1.11)] is not satisfied, the Cauchy problem for Eqs. (1.1) is not 
correct. For the equations linearized on a solution which is independent of x and t, this is shown in [1]. 

The solutions of problem (1.8) are the continuous family of eigenvalues k x = p(t, z, A) - j ( t ,  x), where 
E R, and the eigenvector functionals F l x  and F 21 corresponding to kx: i.e., F l x  = (0, 8(t, - ),)) and 

F 2"~ = (F1 x, F2 ~). Here Fi x act on an arbitrary smooth function ~ according to the rule 

plp~l  du, 
, ? - ;  

and ~i(v - A) is the Dirac delta-function. Acting by these functionals on system (1.4), we obtain the 
characteristic form of the  equations 

Here f ( t ,  x, A) and 

ft + (P - j ) f z  = O, Rt + (p - j)R:: = 0. (1.12) 

n 1 f '  p~ I "  dv 
x, = + J (1.13) 

p 

are the Riemann invariants which are preserved along the characteristics corresponding to the continuous 
characteristic spect rum x = x•(t), (x;~)'(t) = p(t, x, A) - j ( t , x ) ,  where A = const  In (1.13), the integral is 
calculated in the sense of the principal value, p = p( t, x, A ), p' = p( t, z, t, ), f '  = f ( t, x, t, ), and p~ = pz,( t, x, v ). 
We show that  conditions (1.10) [or (1.11)]) and the inequality X+(p) ~ 0 ensure the  hyperbolicity of Eqs. (1.4). 
Here X+(p) are the l imit ing values of the characteristic function on the real axis: 

2 f s  
X+(p) = 1 - n + p l ~ -t- rip2f,. (1.14) 

Let supp f = (-cx~, cr We establish the property of completeness of the family of functionals F la 
and F 21. To do this, we show that  if ( F  lx, ~)  = 0, ( F  2~, ~) = 0, and the function ~ satisfies the Hhlder 
condition with respect to the  independent variable, then ~ = 0. The equality ~2 = 0 from the second relation, 
with allowance of which the  first relation can be written in the form 

1 + p f P'/tv((--'~l)--~l S- tPl) dv =0. 
p' - p 

Passing to the integration variable p', we obtain the singular integral equation 

( n - - 1 - - p f  Pl--fPt--d--pt~p 1 p / p ,  fp,(~pl), 1 y - p  ] + -~--p dp'=O. (1.15) 

We reduce this equat ion to the Riemann problem of the theory of analytic functions [9]. In doing so, 
we introduce the functions q/+(z) and q/-(z) ,  which are analytic in the upper ( I m z  > 0) and lower ( Imz < 0) 
half-planes, respectively: 

�9 +(z) = q/(z), Imz  > 0, q/(z) = p [  p'fp,(qa')'dp 
qY-(z)=qi (z ) ,  I m z < 0 ,  J i f f - -z  

The limiting values of the  functions qJ+(z) and k~-(z) on the real axis are calculated by the Sokhotskii-Plemelj 
formulas: 

P'f"(~i) 'dp' .  (1.16) qt+(z) = ~rip2fpqa 1 + P f p' ~ p 
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From Eq. (1.15), with allowance for the equalities (1.14) and (1.16), we obtain the consequence 

~+ X + 
= - -  ~ - ,  p e ( -c~ ,  ~ ) .  (1.17) 

X- 
The Riemann problem of the theory of analytic functions of a complex variable arises: it is required to define 
the functions ~+  (z) and O2-(z) analytic in the upper and lower complex half-planes, respectively, which satisfy 
the conjugation condition (1.17) on the real axis and vanish as [z[ --~ oo. The functions X+(Z) and X-(Z) tend 
to a constant as ]z[ ---* co and have no zeros in the upper and lower half-plane according to condition (1.10); 
therefore, this pair of functions specifies the canonical solution of the Riemann problem [9]. From (1.17), we 
obtain the jump problem 

for the analytic functions (rP/X)+(z) and (q/X)-(z), which has a unique solution in the class of functions 
vanishing at infinity [8]; therefore *+(z)  = 0. It follows from the equalities (1.15) and (1.16) that 
Rex+(p)~21(p) = 0 and Imx+(p)cpl(p) = 0. Since X+(p) # 0 on the real axis, it is necessary that ~pl = 0. 
Thus, the completeness of the system of eigenfunctionals and the hyperbolicity of system (1.4) is established 
if conditions (1.10) and the inequality X• # 0 are satisfied. 

2. C o n s e r v a t i o n  and  S y m m e t r y  Laws.  System (1.2) admits an infinite number of conservation 
laws with densities depending in a polynomial manner on the moments of the distribution function. To prove 
this statement, we consider the function 

n - 1  f f' dp' r = + (2 .1)  
. 

We assume that f _= 0 for IPl > A > 0 and/~ is a function which depends on x and t and accepts quite large 
values (]#1 > A) in its domain of definition. From (1.2), we obtain the consequence 

1 - , ,  / ,tp + - = (-->- § / (., § ("-: - ). 
(p _ .)2 / 

Let r be a constant in (2.1), i.e., r = ~-1, where 1~1 > A. Then (2.1) defines # as a function of the variables 
t, z, and ~: 

# = -~ + al(t,x) + a2(t,z){ -1 + an(t, x){ -2 + . . . .  

According to (2.2),/~(t, x, {) is the density of the conservation law 

Expanding/z + ~ into a power series of ~-1, we obtain the infinite series of conservation laws, for which the 
coefficients of the series are the densities of the conservation laws. The first three coefficients have the form 

al = j =  A1, a2 = A 2 -  A 2, a3 = A 3 -  3A2A1 + 2A13 (Ai = f p i f d p ) .  

Differentiating (2.1), we sequentially determine the following coefficients depending on higher moments. To 
prove that system (1.2) has an infinite series of conservation laws, the boundedness of the carrier function f 
was used. However, if one approximates an arbitrary, rapidly decreasing at infinity distribution function by 
a sequence of functions with limited carriers, realizing a limiting transition in each divergent equation, one 
obtains an infinite series of conservation laws for an arbitrary f .  

We note that  system (1.4) is reduced in the Hamiltonian form 

('&) Pt + = O, Ht + = O, (2.3) 
Z .T 
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if the new desired function H(t,  x, ~) = f ( t ,  x, ,~)pa(t, x, ~) and the Hamiltonian with the density 

1 

are introduced. The variational 
calculated in the form 

derivatives 5h/SH(.~) 

5h 1 p2 _ pj, 6h 
5H(~) - 2 5p()~--"--) = H ( p -  j). 

and 5h/Sp($) of the Hamiltonian density 

(2.4) 

(2.4) are 

It follows from the existence of the Hamiltonian and the infinite series of conservation laws that  system 
(2.3) admits  an infinite number  of first-order generalized symmetries (the one-parameter  Lie-B/icklund groups) 
[9-11]. If ai is the density of the  conservation law, the equations 

t' 6~ ( 6a, 
PT = \6H( )~ ) ] , '  Hr = \6p(~)]~ (2.5) 

determine the symmetry for (2.3). This means, in particular, that  the one-parameter  family of solutions of the 
Cauchy problem for system (2.5) p(r,  t, x, )~) and H(T, t, x, $) (t is the parameter)  which satisfies the initial 
conditions p(0, t, z, ~) = p(t, x, )t) and H(0, t, z, $) = H(t, x, )t) is simultaneously the one-parameter family of 
solutions of system (2.3) (r  is the  parameter),  if the initial functions p(t, x, ~) and H(t, x, )~) satisfy (2.3). 

From (2.5), we obtain, in particular, the equations specifying the symmet ry  which corresponds to the 
density a3 of the conservation law: 

p T = ( p 3 - - 3 p 2 j - 3 p a 2 + 6 p j 2 ) z ,  H r = ( H ( 3 p 2 - 6 p j - 3 a 2 + 6 j 2 ) ) x  ( A i =  f p iHd~) .  (2.6) 

It is easy to see that  system (1.2) also admits the point transformations of transfer relative to t and 
z: t ~ t + a and x ~ z + b, and the two-parameter extension of the variables x, t, p, and f: t ---* at, x ~ bx, 
p ~ ba-lp, and f ~ ab- l f .  Equations (1.2) are invariant under the Galilei transformation (the transition 
to the coordinate system moving with a constant velocity). This circumstance is explained by the fact that  
the assumption of the zero velocity of the fluid at infinity underlies the derivation of the system of equations, 
which causes the invariance of the equations of motion relative to the Galilei transformation. 

3. R u n n i n g  Waves .  A solution of the form f = f(~,p),  where ~ = x - Dt, describes a running wave 
propagating with a constant velocity D. It is convenient to transform the equat ion of running waves 

(p - j - D)fr + pjcf ,  = 0 (3.1) 

by using j as the independent variable (assuming that  jr r 0): 

(p - j - D)f j  + pfp = 0. (3.2) 

Equation (3.2) is integrated as follows: 

f = O(r/), 2r I = p2 _ 2(j + D)p. (3.3) 

The above solution takes on constant  values on the characteristics 77 = const (Fig. 1 shows the pattern of the 
characteristics of Eq. (3.2) in the  plane p, j) .  We consider the Cauchy problem 

f(~o,p) = fo(p), jo = f Pfo @. (3.4) 

Condition (3.4) ensures a continuous contiguity of the running wave to the known stationary background 
[f0(p) is a specified distribution function] over which the wave propagates. One can see in Fig. 1 that,  if 
j0 + D > 0, the solution of the Cauchy problem is determined for j >/j0 only in the domains f~l and Ft2 [the 
addition to the domain Ft3 in the  half-plane j >/j0, and the curve DAE given by the equation r / = 2 -1 (j0 + D) ~ 
is the boundary of 9t3]. In the domain f~3, the solution should be found by using additional equations. In the 
case where j0 + D > 0, the Cauchy problem (3.4) is incorrect in the direction of the decreasing variable j 
(j ~< j0). Indeed, each characteristic r I = r/1 < 0 intersects the initial straight line j = j0 at two points B and 
C; therefore, the initial function fo(p) cannot be arbitrary and should take on the  same values at these points. 
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Similarly, for j0 + D < 0, one can solve the Cauchy problem (3.4) only in the direction of the decreasing j 
(j ~< j0)- 

Using (3.3), for ( = r we shall define (I)(q) for p ~< j0 + D and p ~> j0 + D (the corresponding functions 
are denoted by r  and (I)+): 

~+(~) = f0(j0 + 0 + ~2r /+  (j0 + 0 )  2 ), (I)-(r/) = f0(j0 + 0 - ~/2r/+ (j0 + D) 2 ). (3.5) 

According to (3.3), for 01 and ~2, the running wave is defined by the relations 

f = (I)+(2-1p 2 - (j + O)p), p >1 j + 0 + ~/(j + 0 )  2 - (jo + 0 )  2, 
(3.6) 

f -~- ( I ) - - ( 2 - 1 p  2 - -  (j + D)p), p < j + D - r  + D) 2 - (j0 + D) 2. 

To find the distribution function in the domain ~3, we transform the equality 

j = / p f  dp (3.7) 

into an integral equation for the desired function (I)(r/), where r /E ( - ( j l  + 0 ) 2 / 2 , - ( j 0  + 0)2/2).  Here it is 
assumed that j0 ~ j ~< j l  in the domain C0 ~< ~" ~< (1 occupied by the running wave. After the introduction of 
the integration variables 77 into (3.7), instead of p, we obtain the Abel integral equation 

~/~ - s ( 3 . 8 )  

F ( s ) = ( 2 ~ - Z - ~ ) _ l [ v f Z - ~ _ O _ / ( r 1 6 2  J (q) + (I)-(~)) ~v/~ ~ d~], 

sO sO 

where s = - 2 - 1 ( j  + D) 2 and so = -2 - ] ( j0  + D) 2. The solution of the Abel equation has the form 

r 1[ F(_so) 
; [ v"~o" --- r/ ~ ~ s ~ J "  (3.9) 

We note that the second relation in (3.4) is equivalent to F(s0) = 0; as a consequence, the first term in 
formula (3.9) is equal to zero. The distribution function is defined by formulas (3.8) and (3.9) in the domain 

~3, where -~ / ( j  + 0 )  2 - (j0 + 0 )  2 ~< p - j - 0 ~< r  + 0 )  2 - (j0 + 0 )  2. The resulting class of solutions 
depends on an arbitrary function j(~). The running wave which propagates with velocity D < - j 0  can be 
constructed similarly. 
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Integrating (3.2) over the  variable p, we obtain 

1 - n = ( j  + D ) n j .  (3.10) 

It follows from (3.10) that the density of the bubble n increases with IJl for two types of running wave. 
The constructed solution of the running-wave type describes the penetration of a portion of bubbles into the 
unperturbed area. We show it by reference to the pattern of the trajectories. 

In a coordinate system moving together with the wave, the trajectories of the bubbles are determined 
by the system of ordinary differential equations 

d (  dp = j cp .  
d--[ = p - j - D ,  d-'[ 

It is easy to see that r/ = const is the integral of the system. This makes it possible to use Fig. 1 to 
analyze the motion pattern. In the domains fll and f12, the quantity p - j - D does not vanish, and the 
trajectories intersect the running-wave region in opposite directions (p - j - D has different signs in fl] and 
f12). For particles with a negative parameter ~/< so (the domain f13), p - j - D changes sign during particle 
motion along the trajectory. These bubbles enter the running-wave region through the front ( = r and 
their relative velocity changes sign at some point of the trajectory (here, the coordinate r reaches a value 
extreme for the given trajectory),  and then the bubble returns to the front ~ = ~1 and leaves the running-wave 
zone. The emergence of these bubbles in the running-wave region increases the density n. Figure 2 shows the 
trajectories of the bubbles in the domain of definition of a running wave in the space t, r p. 

Choosing an arbitrary function j(~),  one can construct periodic running waves, solitons, etc. It suffices 
to choose j as a periodic function ( in the first case or a function satisfying the relation j((0) = j((1) in the 
second. The soliton solution describes the motion of the bubbles trapped in the running wave. In this case, 
the trajectories of the bubbles which correspond to the negative parameter 7/< so remain in the running-wave 
region ~o <~ x - D t  <<. ~1 for all values of t. 

Below, we present the explicit formulas for a running wave propagating over the stationary background 
given by the Maxwellian distribution: 

no 
f o (P)  = ~ exp ( - ( 2 T ) - ' ( p -  a)2). 

Here no, T, and a are the specified constants. It is easy to verify that, for this stationary distribution, we 
have n = no and j = ano.  We consider a running wave propagating with the velocity D = a - j0. According 
to (3.3) and (3.5), for ~ = 6 ,  we have 

2r I = p2 _ 2 a p  = (p - a) 2 -- a 2, 
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a 2 
n._..___~_0 exp ( - ( 2 T ) - l ( 2 r / +  a2)), 7/>~ --~-  r = r  = 

In the domains p/> j + D + r  + D) 2 - a 2 and p ~< j + D - k/(j + D) 2 - a 2, according to (3.6), the 
distribution function has the form 

no 
f - ~ exp ( - ( 2 T ) - l ( p  2 - 2(j + D)p + a2)). (3.11) 

Using formulas (3.5)-(3.9), we find the distribution function in the domain j + D - r  + 0 )  2 - a 2 ~< 

p ~< j + D + 4 ( j  + D) 2 - a2: 

f = (I)(p2/2 - (j + D)p), 
(3.12) 

(I)(r/) = n ~  e r f ( (  a2 + 2~7'~ a2 + 2r/) 
~/2~'Tk "2-T" ] l / 2 ) ) e x p (  ~-24 ' ] - - (2r l ) - l (1 - -no)r  

The running wave is defined completely by the equalities (3.11) and (3.12). Here j = j ( ( )  remains 
an arbitrary function taking values on the semi-axis (ano, o~) (the case j t> j0). In Fig. 3, the distribution 
function is p lot ted in the forward front (curve 1) and at the cross section r = coast, ~ E (~0, r (curve 
2) in the domain of definition of the running wave. One can see that  the penetrat ion of a new portion of 
bubbles into the unper turbed region entails a considerable increase in the distribution function on the interval 
corresponding to the domain fl3- 

4. S o l u t i o n s  I n v a r i a n t  u n d e r  G e n e r a l i z e d  S y m m e t r i e s .  As shown in Sec. 2, the system of bubble- 
flow equations admits  generalized symmetries determined by integrodifferential equations. Generalizing the 
methods developed in the classical group analysis of differential equations [9], one can construct solutions 
invariant under integrodifferential symmetries. Here we construct  a solution invariant under the symmetry 
(2.6). 

We write the determining equations for the symmetries of Eq. (1.2) without using system (2.5). Let 
the symmetry be set by the equation 

f ~ = F ( f , f , , p , x , t ) .  (4.1) 

Here F ( f , p , x , t )  is the nonlinear functional above f , ( . , x , t ) ,  f ( . , x , t )  E B which depends on p, x, and t. We 
introduce the functional g(f ,  p) = (1/2)p 2 - pj. Equations (1.2) are written in the form 

f t  + gpfx - Dxg.fp = O, (4.2) 

where Dx is the  operator of the full derivative with respect to x: 

Og 6g 69 
D=g = ~zz + ~-](f~) + ~f~(fxx) + . . . .  (4.3) 

In formula (4.3), 5g /5 f  and 59/6f~ are the Frechet derivatives with respect to the arguments f and f , .  The 
determining equations for F are derived after differentiation of (4.2) with respect to r:  

(4.4) D,F + gpDxF - Dx(g)Fp + grpf~ - Dx(gr)fp = O. 

Here Dt is introduced as was done for (4.3) with replacement of x by t, and 

6g ~g 
gr = - ~ ( f r ) =  ~--~(e). 

Equation (4.4) should be satisfied on the solutions of system (4.2). If one searches for F in a special form 

F = Gpf~ - Dx(G)fp, G = G ( f , p , x , t ) ,  (4.5) 
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one obtains, from (4.4), the  determining equation for the functional G 

DiG 4- gpD~G - Dx(g)Gp = gr. (4.6) 

As (4.4), Eq. (4.6) holds by virtue of (4.2) and its consequences. The symmetries of Eq. (4.2) correspond to 
the symmetries (2.5) of systems (2.3). Using the transformations relating these equations, we find the class of 
solutions of Eq. (4.6): 

~ai ~ Oai 
= = , . . ,  w z :  $f  j=l u,. D 

In particular, for i = 3, the  functional 

G = p3 _ 3Alp2 _ 3A2p + 6A2p (4.7) 

is the solution of (4.6). By definition, the invariant solutions of Eq. (4.2) satisfy the steady-state equations 
(4.1): 

Y = Gpf~ - Dx(G)A = O. 

As a result, we have the functional dependence f = r  t). Using the relation g~ = 0, which is valid for 
invariant solutions, from (4.6) and (4.7) we obtain the system of equations for the moments A1 and A2: 

An + A2~ - 3A1AI~ = 0, A2t + 3A1A2z + (A2 - 10A2)Alz = 0. (4.8) 

Equations (4.2) will be satisfied if e t  = 0 and f = ~(G) satisfies the equality 

j = A1 = ] p(~(p3 _ 3Alp2 _ 3A2p + 6A~p) @ .  (4.9) 

Since (4.9) sets the relation between A1 and A2 if the function q~ is known, the solution of Eqs. (4.8) should 
be searched for in the class of simple waves. We introduce B = A2A'~ 2. System (4.8) is hyperbolic in the 
domain B > 1 and is reduced to the Riemann invariants: 

rt + AIv/-B - lrz = O, It - A l V a -  llz = 0, (4.10) 

r = C g -  1 - 2 -1 1 + 1)4/3, z =  AT , / - g -  1 -  1 + 2-1)2/3 

It follows from (4.10) that  the simple wave satisfies either the relation r = r0 = const or l = 10 = const. In the 
first case, A1 = v/~I~/B - 1 - 2-11-1/3(v~ - 1 + 1) -2/3, and the function B is the solution of the equation 

B t -  v/~lv/-B - 1 - 2 -1 - U 3 ( v ~  - 1 4- 1 ) -2 /3v~  - 1B~ = 0. (4.11) 

In the second case, A1 = v / ~ l v ~ -  1 -  1 -5/3 V ~ ' -  1 4- 2-11-1/3, and the function B satisfies the equation 

Bt + V/~0 ~ -  1 - 1 -2/3 v / ~  _ 1 + 2 -1 - 1 / 3 v ~  - l B .  = 0. (4.12) 

In what follows, we assume that  A1 = AI(B),  where AI(B)  is one of the two above functions. We transform 
(4.9) into an integral equation relative to the function q). In the integral (4.9), it is convenient to pass to the 
integration variable G. Since 

dG = (3p 2 - 6Alp 4- 3(2 - B)A~) dp, (4.13) 

the correspondence of the  new and old variables is one-to-one on the intervals divided by the roots of the 
square polynomial in parentheses. It follows from (4.13) that dG/dp > 0 for p > AI(1 + V ~  - 1 ) and 
p < a l (1  - V ~ -  1). For p E (AI(1 - x /~  - 1), where Ai(1 + Bv/-B--~- 1 )), the derivative dG/dp is negative. 
The function G takes on the value GI(B) = Aa3(4 - 3B - 2(B - 1) 3/2) at the point of local minimum 
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[p = AI(1 + Bx/-B--Z~- 1)] and the value G2(B) = A13(4 - 3B + 2 ( B  - 1) 3/2) at the point of local maximum (for 
definiteness, we assume that  A, > 0). 

After the variable has been replaced, relation (4.9) takes the form 

oo ~(G)p3 G~B)~(G)p2 
AI(B) = C,  B) ~(G)pl dG - dG. (4.14) 

J da+ / a'(p3) J 
-oo GI(B ) GI(B ) 

Here p = p~(G, B) is the branch of the inverse function, i.e., the root of Eq. (4.7) on the monotonicity site 
G 6 ( -oo ,  G2) and p = ps(G,B) is a similar branch determined on the monotonicity site of a G 6 (Gl,oo),  
and the branch p = p2(G,B) is determined on the  site G 6 (G1,G2). On the last interval, the inequality 
pl < / '2  < p3 is satisfied. Using the functions pi, one can present (4.7) in the form 

X(P) = 0, X(P) = (P - pl(G, B))(p - p2(G, B))(p - p3(G, B)). 

Since X'(pi) = G'(pi) = 1-I (pi - pl,), it is easy to relate the kernels of the integral equation (4.14): 
k#i 

P2 Pl P3 
a'(;,~) G'(pl) a'(p3)" 

With allowance for this relation, (4.14) takes the form 

G~s) ~(G)pl (G, B) oo 
da+ j AI (B) 

--oo G2(B ) 

r B) da 
x'(m(a, B)) 

G2(B) 

" ' \ x ' ( m ) ( a , B )  x ~ - B ) J  dG" (4.15) 
GI(B) 

We show that ,  using Eqs. (4.15), one can find the distribution function in a simple wave of small 
amplitude. Let B vary on t h e  interval (Bo,Ba) in the simple-wave region; here the function G2(B) 
monotonically varies from G20 to G21, and the function Gi(B) takes on the values on the interval (Glo, Gn) ,  
and G u  < G20. We define r  arbitrarily outside the interval (G20, G21) and find the solution of the integral 
equation 

621 2 G~B)( pl(G,B) p3(G,B) "~ p3(G,B) 

J \Z(p,(V,B)) + x'(p3(a, Bl)) ~(~ + / ~'(p3(a,8)) ~(a)ea 
G20 G2(B) 

GI(B) oo 
= A I ( B ) - f  pa(e,B) O ( G ) d G - ]  p3(G,B) O(G)dG 

x'(pl( G, B) ) x'(p3( G, B) ) 
--oo G21 

G2O (p~(a ,B)  ,p3(a,B) "~ 
- 2  / \ x ~ B )  + X~G--( 'BiJ r 

GI(B) 

inside the interval. This is the linear equation of the first kind with an integral operator of the form 

S G21 

-- J (KI(G,S) + h'2(g,S))~(G)dG + / A%(a,S)r = ,~(S). (4.16) 
G20 S 

Here S = G2(B) [accordingly, B = G~ 1 (S)], ~ (S )  is the known function, and Ki(G, S) are the known kernels 
of the integral operators. 

We show that  (4.16) is reduced to an integral equation of the second kind resolved by the iteration 
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method.  The  kernel of the integral operator K2(G, S) has no singularities in the  integration domain, because 
X'(P3) # 0 [Gx(B) < Gn].  However, the function KI(G, S) reverts to infinity for G = S by virtue of the fact 
that  X'(Pl) = 0 for G = G2(B).  We separate the principal te rm of the singularity of the kernel KI(G, S). 
Relation (4.7) can be writ ten in the form 

G2(B) - G (1 + P - p* (p p.)2 (4.17) 
~ ~ -  3A, v ~ :  ~-  (p- p,)z" 

Here p,  = A1 (1 - Bx/-B-'Z~- 1). One can expand p i -  p, into a power series of (G2(B) - G) 1/2 by iterating (4.17). 
Using the first terms of the expansion, we obtain the representation 

1 2 v f ~ ( B  - 1) 1/4 
= + K3(G, S), (4.18) 

p 2 ( G , B ) - p , ( G , B )  ~ /G2(B) -G  

where Ka(G, S) is a continuously differentiable function having first-order zeros for G = S. The second 
cofactor in the representation of the  kernel K1 (G, S) 

P3 1 + 2 V ~ -  1 
P3 -- Pl 3 V ~  -- 1 + K4(G, S) (4.19) 

has no singularities. The function K4(G, S) has the same properties as the function Ka(G, S). Multiplied 
expressions (4.18) and (4.19), we obtain 

g,(a, S) - ~(s) + Sv/g -2-- 61r S) + Kda, S). (4.20) 

Here Ks(G, S) and K6(G, S) are continuously differentiable functions, K6(G, S) = 0 for G = S, and 

2v'N(1 + 2 BJg-c-f- 1) 
~ ( s )  = 

3(B - 1) 1/4 

The  substitution of (4.20) into (4.16) gives the integral equation 

S ~ G2I 

f v/g_2_~dG ~1(S) = f (x /S-  GLI(G,S)+L2(G,S))O(G)dG+ f La(G,S)~(G)dG+(2~(S))-I~(S) 
~20 G20 S 

with the continuously differentiable kernels Li(G, S). 
Inverting the Abel integral operator, we obtain an equation of the second kind 

�9 ( a )  = 1 ~(S) 
-~ _ ~ d S ,  (4.21) 

G20 

which is unambiguously resolved by the iteration method for small values of IG21 - G20]. 
If the distribution function r  is found from (4.21), the solution which is invariant under the 

generalized symmetry is completely determined by any solution B = B(x, t)  of Eqs. (4.11) [or (4.12)]. 
In the resulting simple wave, the particle trajectories are the integral curves of the system 

dx dp pj~ (4.22) 
d--i = p -  i ,  d-7 = " 

In the simple-wave region, it is convenient to search for the trajectories in an implicit  form: k(x, t) = ko(t) and 
p = po(t), where k = k(x, t) is the angular declination of the characteristics of the  simple wave. For kz # 0, 
resolving the equation k(x, t) = ko(t) relative to x, one can find the coordinate x of the particle x = xo(t). 
Since the function k(x, t) satisfies the equation kt + kkz = 0 in a simple wave, the  equalities 

dk dp 
d--[ = (p - j - k)kz, d--~ = pjkkz (4.23) 
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follow from (4.22). System (4.23) has the integral G(p, k) = const owing to the fact that Eq. (4.6) takes the 
following form in the simple wave: 

(p - j  - k)Gk + pjkGp = 0. (4.24) 

It follows from (4.24) that the extrema of the function G(p) correspond to the points of rotation of the 
trajectories in a coordinate system moving together with the wave (the points where p - j - k changes sign). 
Hence, the constructed solution f = f(p, k) describes the flow with critical layers: the velocity of the simple 
wave k coincides with the particle velocity p - j at definite points of the trajectories. 

We note that the running wave constructed in Sec. 3 may be considered as a solution invaxiant under 
the generalized symmetry. For this solution, the symmetry is set by Eqs. (4.1) and (4.5) with the functional 
G = p2/2 - (j + D)p. 

Conclus ion.  The system of kinetic equations for the one-dimensional motion of bubbles in a fluid that 
was derived by G. Russo and P. Smereka has several interesting properties. These equations are reduced to 
an integrodifferential system which is hyperbolic (in the meaning of [6, 7]) in the case of realization of definite 
conditions. There is an integral transformation of the unknown functions to a system of Riemann invariants 
which are preserved along the characteristics of the continuous characteristic spectrum. The system admits 
an infinite number of conservation laws with densities depending on the moments of the distribution function. 
In addition, the equations of motion can be written in the Hamiltonian form. This makes it possible to find 
an infinite number of generalized symmetries of the system specified by integrodifferential equations of special 
form. Here, the exact solutions invariant under the first generalized symmetries from an infinite series have 
been obtained. Equations that  determine the running waves have been integrated completely. For one class 
of simple waves, the problem of construction of the solution is reduced to a linear integral equation of the 
second kind resolved by the iteration method. 
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